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A homogeneous turbulent shear flow in its asymptotic stage of development was 
subjected to an additional (longitudinal) strain by passing the flow through gradual 
contraction in the direction perpendicular to that of the mean shear. Two contraqtions, 
of area ratio 1.4 and 2.6, were used. Mean velocity and turbulent stress (both normal 
and shear) distributions were measured at several streamwise locations in the 
contraction region. The mean velocity distributions agree quite well with calculations 
based on the (inviscid) Bernoulli equation. Until at least half-way down the 
contraction with the larger area ratio, the rapid-distortion calculations considering 
only the streamwise acceleration were found to be reasonably successful in predicting 
the turbulent intensities. For the smaller-area-ratio contraction, corrections for 
the ‘natural development ’ of the shear flow become important nearly everywhere. 
Similar calculations considering the shear as the only straining mechanism are 
generally less successful, although the shear strain rate is at least as rapid as, or even 
more so than, the longitudinal one. The pressure-rate-of-strain covariance terms 
estimated from the approximate component energy balance were used to test the 
adequacy of three models with varying degrees of complexity. Although none of these 
models appears general enough, their performance is generally adequate for the 
lower-area-ratio contraction ; perhaps not surprisingly, the more complex the model 
the better its performance. 

1. Introduction 
The simplest conceivable turbulent shear flow is one in which a homogeneous field 

of turbulence is maintained by a uniform mean velocity gradient. Such a flow is 
strictly unattainable experimentally, but several attempts have been made to 
generate approximations to such an ideal shear flow (Rose 1966; Champagne, Harris 
& Corrsin 1970; Mulhearn & Luxton 1970,1975; Harris, Graham & Corrsin 1977; see 
also Tavoularis & Corrsin 1981). It is now clear that in the earlier experiments of Rose 
and Champagne et al. the flow had not attained its asymptotic state, but Harris et 
al. did succeed in producing a good laboratory approximation to a transversely 
homogeneous uniformly sheared turbulent flow in its asymptotic state. In  this 
asymptotic state, each of the turbulent energy components grew nearly linearly with 
the streamwise direction xl. However, the ratio of any two of them and the shear 
correlation coefficient, 

c = -iqii& u;, (1)  

were approximately constant in zl. Here, u1 and u2 are velocity fluctuation 
components in the q- and 2,-directions respectively, x2 being the direction of mean 
shear. A prime denotes the root-mean-square value. 
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The experimental studies mentioned above have served several useful purposes. 
First, all of them have shed some light on the mechanism of turbulence in the absence 
of the complex effects of rigid and free boundaries. Secondly, they have served as 
basic test cases for turbulence modellers, and have provided information useful in 
the construction of models aimed at even more complex turbulent shear flows (see 
e.g. Launder, Reece & Rodi 1975; Reynolds 1976, and a host of calculation methods 
presented in the Stanford meeting on Complex Turbulent Flows, 1981). Also, 
attempts have been made to simulate these relatively simple flows directly on a 
computer (Feiereisen et al. 1981). As an obvious sequel to the research cited above, 
i t  seemed that a study of the effects of additional complexities imposed on the 
homogeneous shear flow was worthwhile. We elected to impose an extra streamwise 
strain on the flow in its asymptotic development. The primary purpose of this paper 
is to document some aspects of such a flow field. 

A second purpose of this paper is to evaluate from an approximate component 
energy balance the turbulent pressure-rate-of-strain covariance terms in the equations 
for the normal Reynolds stresses. (For brevity we shall designate them simply as 
pressure-strain terms.) These terms defy simple and direct means of measurement 
in most laboratory flows, and pose a challenge to turbulence modellers. Nearly all 
estimates made of these terms have been via turbulent energy balance, but such 
estimates are not always reliable owing to uncertainties in the measurement of other 
quantities, especially the triple-correlation terms. Reliable estimates have been made 
only in relatively simple flows, with the mean strain rate either entirely absent (Uberoi 
1957) or present in one direction only (e.g. Harris, Graham & Corrsin 1977 - hereinafter 
referred to as HGC) ; because of the relative simplicity of these flows, the inferences 
drawn from these estimates are not expected t o  be general. The present flow, while 
being sufficiently simple because of the normal and spanwise homogeneity (thus 
rendering the triple-correlation terms effectively zero), is sufficiently complex because 
of the two mean rates of strain (the shear as well as the acceleration) that some general 
conclusions could be expected from the pressure-strain terms deduced from energy 
balance. In particular, this would allow a direct assessment to be made of the 
adequacy or validity of some of the current models for these terms, especially those 
involving the linear or the mean strain part (or the ‘rapid part’, as it is often called). 
Leslie (1980), for example, has made a somewhat similar attempt for the HGC data. 

Mention should here be made of the studies by Gence & Mathieu (1979) and 
Townsend (1980) both of which complement the present work. Gence & Mathieu 
(1979) studied the effect of successive irrotational distortion in a duct in which the 
principal axes of mean strain changed continuously. Townsend (1980) provided a 
scheme for calculating the response of sheared turbulence to additional distortion (for 
a brief description, see $4.3 below). 

Briefly, then, the study consisted of the following. A homogeneous shear flow was 
generated using essentially the HGC setup and allowed to reach its asymptotic state. 
A two-dimensional contraction was inserted a short distance downstream. Both mean 
velocity and turbulence-stress profiles (normal and shear) were measured at  several 
stations along the flow direction; some components of energy dissipation were also 
measured. The pressure-strain terms were evaluated from the energy balance made 
along the wind-tunnel axis. Although, with this information, it is in principle possible 
to test most existing pressure-strain models, we restricted ourselves to testing 
the following three: (a)  Rotta’s (1951, 1962) linear intercomponent exchange 
hypothesis; (b) the Daly & Harlow (1970) method of indirectly accommodating mean 
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strain rates; and ( c )  Launder et aZ.’s (1975) method of modelling the mean-strain part 
explicitly. Each of these models is representative in the sense that each adopts a 
different philosophy. 

Two contractions, of effective area ratio 1.4 and 2.6, were used. The original 
intention had been to use three area ratios for the contraction so that the ratio of 
the longitudinal rate of strain to the mean shear in the flow was far less than, 
approximately equal to, and far greater than, unity. Unfortunately, the size of the 
wind-tunnel test section precluded consideration of this last case. However, this 
omission does not appear serious because the extra strain can then be expected to 
overwhelm the shear (see $4.3). Here the strain rate ratio was about 0.12 in the 
lower-area-ratio contraction (case a), and about 1 in the higher-area-ratio contraction 
(case b). In both cases, the strain fields - longitudinal as well as shear - were not large 
enough for the turbulence field to be treated by the rapid-distortion approach (e.g. 
Ribner & Tucker 1953; Batchelor & Proudman 1954; Townsend 1954; Hunt 1973, 
1977) which requires that the external strain be applied so rapidly that the 
self-modulation and viscous terms have little time to become effective. However, it 
has often been found that, even when the externally applied strain rate is not strictly 
large, the rapid-distortion theories qualitatively reproduce the measured results (e.g. 
Townsend 1954, 1976; Narasimha & Sreenivasan 1973; Keffer et al. 1978) especially 
if the theory is ‘corrected’ for the ‘natural development’ of the flow. This idea has 
been used quite successfully in the past (e.g. Prabhu, Narasimha & Sreenivasan 1974; 
Tucker & Reynolds 1968; Townsend 1980). Encouraged by such attempts, we 
considered it worthwhile making a ‘prediction ’ for the stress and energy components 
using the rapid-distortion approach and its modifications. 

Section 2 provides details of the experimental facilities and measuring equipment. 
In  $ 3, the measurements are presented ; simple predictions for the mean velocity and 
turbulence stresses are attempted in $4. In $5, the pressure-strain terms are evaluated 
from approximate energy-balance measurements, and examined in the light of the 
models mentioned earlier. The note ends with a summary of some of the conclusions. 
In  the appendix, we examine to what extent the concept of total strain can unify 
the homogeneous shear-flow measurements ; this is in essence an update of the notion 
due to Townsend (1976). 

2. Experimental conditions 
The wind-tunnel and the shear generator used for the present, experiments have 

been described by HGC. Briefly, the wind-tunnel has a 3.36 m long test section with 
a 30.5 x 30.5 cm nominal cross-section. The shear generator consists of twelve 
channels of equal width, whose variable resistance to the flow can be adjusted to 
create a linear mean velocity distribution some distance downstream. A two- 
dimensional contraction was created by placing two wedges symmetrically in the test 
section (see figure 1)  beginning at z , /h x 7.6, where h( = 30.5 cm) is the height of the 
test section. The wedges were made of polished wood except for the aluminium 
leading edges bonded to the main body. The mean centreline velocity upstream of 
the contraction ( z J h  = 6.5) was about 10.86 m s-l in case (a) and 10.31 m s-l in case 
(b), respectively about 12 % and 17 yo below the HGC value. These reductions were 
caused by the insertion of the contraction wedges into the test section, and could not 
be eliminated because of the blower limitations. The mean shear rates in the flow at 
z , / h  = 6.5 were respectively 39 s-l and 36 s-l, also lower than the HGC value of 44 s-l 
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view 

Shear flow 
generator 

FIGURE 1. Schematic of the wind-tunnel and two-dimensional contractions. All dimensions in cm. 

by about the same fractions as the mean velocity. The turbulence levels were also 
slightly lower, and these are described in 53. 

The mean and turbulent velocities were measured with DISA 55DO1 anemometers 
using Pt-Rh DISA X-wires, each 5 pm in diameter and about 0.8 mm in length. The 
X-wires were calibrated in the wind-tunnel without the shear generator in place, and 
the spanwise cooling of the hot wires was taken into account by using Champagne, 
Sleicher k Wehrmann’s (1967) expression for the effective velocity U,  as 

U, = U,  [cos2 $ + K2 sin2 $I:, 
where $ is the angle of the wire to the flow direction, and K is assumed to be 0.2. 
The turbulence velocity signals were digitized on an %bit digitizer and processed 
on-line on a PDP 11/40 computer. I n  the earlier stages of the work, the signals were 
linearized on the digital computer, but i t  was discovered that the differences in the 
second moments between the linearized and nonlinear signals were small, and so the 
results presented here uniformly ignore linearization. 
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3. Measurements 
3.1. The asymptotic state of the linear shear $ow 

For purposes of locating the wedges forming the contraction in the wind-tunnel, it 
is necessary to establish the streamwise distance beyond which the homogeneous 
shear flow can reasonably be said to have reached its asymptotic state. Although HGC 
observed that this state (identified essentially by the linear growths of u:, u: and 3) 
is reached when the parameter (xl/Qc) dUl/dz2, Q, (= Ul a t  z2 = 0) being the 
centreline velocity in the test section, exceeds a certain value, i t  is not exactly clear 
from their plots when this occurs. For the purpose of plotting the data in a more 
helpful way we note that, by definition, the ratios of different turbulent quantities 
to each other are constant with x1 in the asymptotic state of the flow. The most 
appropriate quantities to examine then are the ‘ K parameters ’ (originally designated 
as structure parameters by Townsend 1954) defined as follows: 

_ _  

From figure 2, one can see that the asymptotic state is approximately reached for 
(xl/Qc) dU,/dx2 2 5. For the present experiments, this means that z , / h  2 6. HGC 
estimated from their plots that the asymptotic state was attained around 
(zl/Qc) dU,/&, z 7, a similar but slightly more conservative conclusion. 

To allow the flow to develop furt,her, and to account for possible upstream influence 
due to the contraction, i t  would be preferable to have the contraction begin at a 
somewhat larger zJh .  In these experiments, the wedges were placed at x l / h  N 7.6, 
and the contraction effects were just noticeable from zl/h N 7. The range of the 
present measurements is thus 7 5 xl/h 5 11. 

3.2. Mean velocity distributions 

Figure 3 shows the mean velocity profiles across the test section measured at several 
locations along the contraction. About a 5 cm region in the vicinity of the top and 
bottom walls was excluded from measurements so as to avoid possible confusion with 
the boundary influence. The mean-velocity distribution maintains its linear shape 
throughout, and becomes progressively less steep as the flow develops through the 
contraction. 

3.3. Turbulence stresses 

Figure 4 shows the variation of the root-mean-square velocity fluctuations u;, ui and 
uj, normalized by the local centreline velocity 4,. Figure 5 is a plot of the normalized 
Reynolds shear stress -u1u2/Q;; in this plot, the inhomogeneities present in the 
flow are exaggerated in comparison with those of normal stresses. (The correlation 
coefficient C defined by (l), however, remains more uniform in x2 than the turbulent 
intensities or the shear stress individually.) The degree of normal homogeneity 
generally improves with streamwise distance. Roughly speaking, we can conclude 
from figures 3 ,4  and 5 that a uniformly sheared flow that initially has an approximate 
homogeneity retains this property throughout the contraction. 

Referring to figure 1 , the relatively small width of the test section towards the end 
of contraction (b) makes it necessary to ascertain that there indeed was a central 
region within which homogeneity in the 2,-direction is a reasonable approximation. 
Figure 6 shows two profiles of ui/Q, a t  x l / h  = 9.5 and 11 ; also marked are the ‘edges’ 
of the side-wall boundary layers, as determined from mean-velocity measurements. 

- 
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FIQURE 2. Variation of the structural parameters KO,  K ,  and K ,  against (xI/9Yc) (dU,/dx,): 0, 
Champagne et al. (1970) ; x , Harris et al. (1977) ; ---, Mulhearn & Luxton (1975). 

At the last measuring station, there is a central 5 cm region where variations in the 
mean velocity U ,  are negligible. However, the extent of this region for turbulent 
intensities is less (because of the boundary-layer-induced ' potential ' fluctuations), 
and is no more than about 2 c m  long. The assumption of homogeneity in the 
2,-direction is therefore less certain towards the end of contraction ( b ) , t  although no 
more so than that of homogeneity in the x,-direction. It is, however, necessary to  
comment that attempts were made using Phillips' (1955) $-power law to correct for 
the 'potential ' fluctuations due to  the side-wall boundary layers, but the corrections 
did not have a significant influence on any of the conclusions that follow. 

t A possible implication is that the largest scales of motion may be inhomogeneous, although- 
this should not seriously affect the energy-containing range of eddies. 
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FIGURE 3. Mean velocity profiles across the wind-tunnel through the contractions (a) and (b). 
Straight lines correspond to predictions from the application of Bernoulli’s equation along fixed 
streamline (see $4.1). 

4. Prediction and analysis of measurements 
4.1. Mean-velocity distribution 

The mean-velocity development in the contraction can be predicted relatively easily 
by the use of Bernoulli’s equation, which should hold reasonably well along 
streamlines in an environment of low turbulence level such as the present flows. First, 
because the mean velocity is everywhere linearly distributed, we can write 

where the suffix c denotes centreline values. Upon integrating (3) across the wind- 
tunnel height, conservation of mass requires (ignoring the boundary-layer develop- 
ment) that 

42, x (4) 

Here, the additional suffix o refers to a station upstream of the contraction and A 
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FIGURE 5. The normalized Reynolds shear stress distribution -GI%: through contractions (a) 
and (a). For clarity, points are joined by lines and the origin on the abscissa is shifted for each set 
of points. 
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FIGURE 5. The normalized Reynolds shear stress distribution -GI%: through contractions (a) 
and (a). For clarity, points are joined by lines and the origin on the abscissa is shifted for each set 
of points. 
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FIGURE 6. Spanwise distribution of turbulent intensity u;/%, for contraction (b). 0,  x , / h  = 9.5; 
0, 11. The arrows show the 'edge' of the sidewall boundary layer (as measured by mean velocity 
distribution). 
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is the (effective) local area ratio (> 1) .  Applying Bernoulli's equation along a mean 
streamline (which in this case resides at a constant x2/h), we have 

0 

q = 5 (Po-P)+ q0, 
P 

(5 )  

where P is the static pressure and p is the density. Since Po - P is independent of x2, 
it follows from (51 that 

It now follows from (3), (6) and (4) that 

all quantities on the right-hand side of (7) being known. Figure 3 shows that the 
mean-velocity profiles obtained from (7) are in good agreement with measurement 
except perhaps towards the end of the contraction (b). This is not surprising since 
the stream surfaces diverge some distance upstream of the geometric end of the con- 
traction, so that the approximation that they reside along surfaces of constant x , /h  
becomes less accurate. 

4.2. Energy and stress balance 
Homogeneity in the normal and spanwise directions implies little turbulence transport, 
and the viscous transport is negligible if the Reynolds number is high. HGC have 
written the turbulence-component energy equations to the leading order as relevant 
to a transversely homogeneous shear flow. Transverse homogeneity is a reasonable 
approximation in the flows considered here (in fact, better than in the HGC flow), 
and many of the consequences they deduce hold at least as well. It is perhaps 
necessary to comment a little on the spanwise homogeneity which requires, typically, 
that: 

a -  a -  
- (q2u3) = - (u 3P) = 0, 
3% ax3 

where 7 = -and p is the fluctuating pressure. These relations may not be strictly 
true towards the late stages of contraction (b), but elsewhere in case (b), as well as 
in case (a), they must be reasonably good because there is a sufficiently wide region 
in the x,-direction within which turbulence properties are essentially constant. 

A second comment concerns turbulent transport in the streamwise direction. 
Measurements have shown, in both contractions (a) and (b), that 

- 
so that it is possible to ignore to a very good approximation terms like @/ax,) (ul 4,). 
Similarly, i t  appears reasonable to put 

a -  
- (u,p) x 0. 
3x1 

This term is at most of the order p'q'll, where q' = [(?)$ and 1 is an integral scale 
of turbulence; l/q' is a characteristic eddy turnover timescale. The ratio p'q'll is 
clearly smaller than the term p(au,/ax,), which would be at least of the order p'q'/A 
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( A  is the Taylor microscale). Further, the viscous diffusion term v(a/ax;) (2) was 
actually computed from the 2 data, and was found to be small. Following the lead 
of HGC, the relevant equations can then be written as: 

and 

where 

(here and elsewhere no summation is implied on a) indicate the viscous dissipation 
terms. Compared with the HGC flow, we can expect a slower streamwise growth of 
u: because of the reduced aU,/ax, (see ( 5 ) ) ,  and the appearance of the extra (negative) 
term - q a U , / a x ,  on the right-hand side. On the other hand, 2 can be expected 
to grow faster than in the HGC case because of the %aU,/ax, term in (10). These 
expectations are generally consistent with observations. 

To the same degree of approximation, the balance equation for the Reynolds shear 
stress can be written as 

- 

If the Reynolds number is sufficiently large, the viscous terms in this equation can 
be expected to be negligible (Champagne et aZ. 1970). The only extra term here from 
the corresponding HGC equation is the ~ ( a U , / a x , )  term. The negative magnitude 
of this term suggests that -= increases more slowly than in the unaccelerated 
shear flow, again as observed. 

The turbulent kinetic-energy equation is 

where the viscous dissipation term e = el + E ,  + e3. 

4.3. Rapid-distortion calculations 

An important factor to be noted in (8)-( lo), (12) and (13) is that the self-modulation 
effects of turbulence occur only through pressure in the pressure-strain covariance 
terms, but that is enough to render the first-principle prediction of the turbulence 
stresses impossible. If the mean strain rates are sufficiently rapid, this effect becomes 
negligible, and the evolution of turbulent-energy components can be predicted com- 
pletely from linear theory alone. For this rapid-distortion assumption to hold for 
the energy-containing eddies, it is necessary that the superimposed strain have a 
characteristic timescale much smaller than that characteristic of the energy containing 
eddies. This latter quantity can be expected to be of the order ( l / q ’ ) ,  and thus the 
appropriate ratios to examine are (i) (q’ /Z)/(XJ2/ax2)  for the mean shear, and (ii) 
(q’/Z)/(aUl/ax,)  for the longitudinal strain. With increasing distance into the con- 
traction, the mean shear a U,/ax,  becomes smaller, while the longitudinal strain rate 
aU,/ax, increases initially before settling down to be a constant. (Towards the very 
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FIQURE 7. The parameters (q ’ / l ) / (aUl /ax l )  (0, a), and ( q ’ / l ) / ( ~ l J J ~ x 8 )  (A, A) during contraction. 
Unfilled and filled symbols correspond respectively to contractions (a) and (a). 

end of the contraction (b), aU,/az, also falls off.) Figure 7 shows the ratios (i) and 
(ii) defined above ; here, 1 is determined from 3q’)”e.  It is seen that, for the contraction 
(a), the mean shear is an order of magnitude larger than the mean streamwise 
acceleration, while both of them are comparable in case (b). None of the straining 
rates in either contraction is sufficiently large for rapid-distortion theory to be strictly 
applicable, but it is known (e.g. Townsend 1954, 1976; Narasimha & Sreenivasan 
1973; Keffer et al. 1978) that, even if the rapid distortion requirements are only 
marginally satisfied, the evolution of the turbulence structure is qualitatively 
consistent with the rapid-distortion hypothesis. Explicit results are available only 
for simple types of distortion, such as irrotational distortion (see Batchelor & 
Proudman (1954) for initially isotropic turbulence, Sreenivasan & Narasimha (1978) 
for initially axisymmetric turbulence) and plane shearing (Pearson 1959 ; Townsend 
1976), but not for complex distortions such as occur in the present experiments. The 
one exception is due to Townsend (1980), who evolved a step-by-step procedure to 
account for a combination of several simple distortions ; according to this procedure, 
the distortion history is split into a number of steps, each of a simple type and not 
too large, chosen so that the total distortion at the end of each step is reasonably 
close to the actual flow distortion. Powerful though this procedure is, actual 
calculations assume an arbitrarily chosen eddy viscosity (Pearson 1959 ; Townsend 
1976) to account for the energy transfer from large to small eddies. 

An appropriate scheme for calculating the present flow is one in which the condition 
just upstream of contraction are assumed to have evolved from an hypothetical 
isotropic state under the application of plane shear (Townsend 1976) and then apply 
the step-by-step procedure of Townsend (1980). We have not done this for two 
reasons. First, our objective here is relatively simple and restricted in scope: we want 
to demonstrate that, although the shear is at least as strong as irrotational strain, 
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FIGURE 8. Variation of turbulent intensities along the wind-tunnel axis through the contraction. 
Open - symbols for contraction (a), and c l o d  symbols for contraction (a). Note staggered origins. 
0, We&,; 0, W@Eo; A, W@Eo. - , from irrotational rapid-distortion theory; ---, with 
modifications for natural development. 

the latter quantity has a dominating influence on the evolution of turbulence 
structure for a certain distance following its application. Secondly, the scheme 
described above assumes (for tractability) that the plane shear is rapid, which it is 
not in the present experimenfs. The resulting uncertainty of these calculations will 
thus introduce an ambiguity in the interpretation of the present analysis whose chief 
concern is a qualitative assessment of which of the two strains within the contraction 
has a dominating influence. Under the circumstances, i t  seemed instructive to 
calculate the effects of the irrotational and shear strains separately, instead of 
resorting to complex schemes which combine both. 

The rapid distortion results for the irrotational strain are shown in figure 8. Here, 
for simplicity, we have used 'isotropic theory ', and scaled the individual components 
to the appropriate measured values at x lh  = 7 ,  thus necessarily forcing at the starting 
point perfect agreement between experiment and theory. Allowing for this artifact, 
we may note that the theory seems to be quite successful for 2 and 3 in case (b) ,  
although it uniformly underestimates 2. Not unexpectedly, even the qualitative 
behaviour is not predicted correctly for the contraction (a ) .  

Since the irrotational strain in the present experiments if far from being rapid in 
the strict sense - see e.g. Hunt (1973) for a thorough discussion of the conditions for 
rapidity - it is interesting to see whether the conclusions change if one allows for the 
' natural development ' of the flow in some empirical way. Although the ' correction ' 
procedure we adopt is much the same in spirit as that of Ribner & Tucker (1953), 
we note that we are not merely correcting for viscous decay, but for the development 
that would have occurred in the absence of the contraction. 
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- _  
Let f a  indicate the ratio U:/(U:)~ (a = 1,2  or 3, not summed) corresponding 

to the situation when the homogeneous shear flow develops undistorted, such as in 
the HGC experiment. Further, let ga indicate the same ratio predicted according to 
the rapid-distortion theory discussed above. The product f a g ,  then gives the 
combined effect of the natural development of the flow and of rapid distortion, 
assuming that the two effects occur separately. Figure 8 also shows that these 
‘modified rapid-distortion’ results are acceptable for x l / h  5 9 in case ( a ) ;  although 
the general agreement for 2 in case ( b )  improves, the prediction for the other two 
components is worse. The reason is clearly that the ‘corrections ’ are too large, or that 
the two effects - the rapid distortion and the natural development - do not occur 
independent of each other. 

The usefulness of the rapid-distortion theory is not that it can provide a 
working-prediction model for energy-component changes in situations such as the 
present one, but that i t  can predict the K parameters correctly. Figure 9 shows that 
both sets of calculations give reasonable results for K ,  and K, ,  which are thus 
insensitive to the specific model. 

Let us now consider the shear strain separately. As mentioned earlier, we can 
view the turbulence structure just upstream of contraction as evolving from a 
(hypothetical) initially isotropic state in response to the application of mean shear. 
Similarly, the turbulence structure anywhere within the contraction can also be 
viewed as developing from a structureless state through the application of the 
appropriate strain history. If the applied mean shear strain is sufficiently large, the 
turbulence structure at any given stage is completely determined by the local value 
of the total strain parameter 

T‘ 
P = (aUl/ax2)dt; 

T ,  typically the lifetime of the large eddy, is the order of @ / B  in equilibrium, so 
that /3 x ?@/E)  (aU,/ax,) x 4.5 just upstream of contraction. During contraction, 
(aU,/ax,) decreases with x1 (see figure 3), but large eddies will still have a timescale 
not very different from the initial value; the net result is that, towards the end of 
contraction, /3 x 1.5 for contraction ( a )  and about 2.5 for contraction (b ) .  According 
to the rapid-distortion hypothesis, the turbulence energy components as well as the 
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Reynolds shear stress upstream of the contraction should correspond to  a /3 N 4.5, 
while those downstream must correspond to the respective downstream values of /3 
estimated above; anywhere inside the contraction, one can use the local values of 
aUl/az ,  to evaluate the local /? which should be sufficient to specify the turbulence 
structure there.7 As remarked elsewhere, Townsend (1976, chapter 3; for example, 
figure 3.14) has calculated the variation of energy components with /3. We shall, 
however, avoid making a detailed comparison of these calculations and the measure- 
ments, chiefly because of the uncertainty in the precise value of /? (one can only make 
estimates for it) and the sensitivity of the quantitative results to it. Brief calculations 
suggest that: for contraction (a) the energy components 3 and 3 should decrease 
respectively at the end of contraction to about a and $ of their pre-contraction values, 
while 2 should increase by a factor of about 1.7 ; for contraction (b) $ and 2 should 
decrease respectively to about and $ of their initial values and 2 should increase 
by a factor of about 1.5. Except for 3 and $ in case (b), even the direction of these 
predictions is wrong (see figure 9). 

Corrections of the type mentioned above bring the results into qualitatively better 
agreement with measurement, but the overall performance still falls short of the 
corresponding irrotational rapid-distortion calculations (except perhaps for $ in 
case (b)). The relatively better performance of the irrotational rapid-distortion theory 
as compared to the shear rapid-distortion theory, even though the shear strain is at 
least as rapid as the longitudinal strain, should be attributed essentially to the 
well-known fact that the turbulence structure responds more readily to the extra 
strain even when its absolute value is smaller. 

Figure 10 shows the variation of the Reynolds shear stress -u1u2 along the 
centreline (the lower two blocks) as well as the correlation coefficient C (the uppermost 
block) which seems to remain nearly constant-only a little higher than the 
corresponding HGC value in the undistorted homogeneous shear flow. The irrotational 
rapid-distortion theory is incapable of evaluating the shear-stress variations, but the 
fact that the measured correlation coefficient is approximately constant through the 
contractions implies that the Reynolds stress variation is given simply by changes 
in the velocity product u; ut. By this hypothesis, the irrotational rapid-distortion 
results give 

- 

--G = Co(glg2): (14) 

while the modified results give 

-G = CO(f1 f 2 P  ( S l  g,)i. (15) 

Here, C, is the pre-contraction value of the correlation coefficient C. These calculations 
are also shown in figure 10, using the measured value of Co (0.49 in case (a)  and 
0.45 in case (b)). There is reasonable agreement for z J h  5 9 in both contractions 
(a) and (b). The shear rapid-distortion calculations, on the other hand, suggest that -- should actually decrease (to about t and the initial values, respectively, in 
cases ( a )  and (b)) if no correction is applied, and that it shall remain approximately 
constant if the previously discussed corrections are applied. Both these predictions 
are incorrect, again presumably because of the reasons mentioned earlier. 

t This view is strictly correct only for a flow in equilibrium (see §A 3). See Maxey (1982) for ways 
of handling ' non-equilibrium ' situations. For present purposes, such modifications were deemed 
unnecessary. 
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FIQVRE 10. Variation of the correlation coefficient C and the normalized Reynolds shear stress 
-u,ue/4&, (0,  contraction (a); 0 ,  contraction (b)) along the wind-tunnel axis through the 
contraction. In the top figure, data points are joined only for clarity; ---, mean HGC data. In 
the lower two figures, curves indicate calculations according to (14) (-) and (15) (---). 

- 

5. Pressure-rate-of-strain covariances 
To evaluate by balance the pressure-strain terms from (8)-(10) and (12), it is 

necessary to  measure all other terms in these equations. We measured some (but not 
all) components of the fractional energy dissipation rates 6, (see (1 I ) ) ,  and all other 
quantities of interest. The total energy dissipation rate E = 6 ,  + e2 + c3 can however 
be obtained fairly easily from (13) in which every other quantity has been measured. 
The E thus estimated along the centreline is compared in figure 11 with the isotropic 
estimate 

= 15v (3 -A , 

where aul/axl is obtained from the temporal derivative of u, using the Taylor 
approximation 

a i a  
ax, a, at' 
_-  _--  



Effect of contraction on a homogeneous turbulent shear jow 203 

2.0 

€/El 

1 .o 

0 

I I I I I 

I 8 9 10 11 

x , / h  
FIGURE 11. The ratio of the turbulent energy dissipation E obtained by energy balance to that 

obtained by local isotropy. 0, contraction (a); 0,  contraction (b) .  

Figure 11 shows that one of the effects of the contraction is to enhance the rate 
of dissipation beyond the isotropic value eI. Somewhat larger deviations from local 
isotropy in case (b) indicate a possibility that the additional strain due to acceleration 
affects the dissipating range of eddies directly ; this is not unexpected at the moderate 
Reynolds numbers (RA = ui h / v  N 250 at z J h  = 6.5) of the flow. A further indication 
that the assumption of isotropic dissipation is not strictly applicable comes from 
figure 12 which shows the ratios 

both of which should be 2 for local isotropy. 
Although the isotropic estimates of dissipation thus are not strictly correct, the 

largest value of the ratio e/sI is about 1.5, and neither of the quantities in (1  7 )  is more 
than about 20 % away from the isotropic value. Thus, if we put 

(18) 

we may speculate that about 20% errors in E ,  are likely. 
After some trials with the measurement of all components of ea, we concluded that 

the errors could not be any less in these measurements (for a discussion of these errors 
in the context of temperature dissipation measurements, see Sreenivasan, Antonia 
& Danh 1977), and hence resorted to (18) for evaluating the pressurestrain terms 
from (8)-(10) and (12). 

It is worth recalling that the pressurntrain terms at a position x can be expressed 
(Chou 1945) as: 

El x Ea x e3 % ti, 

where the quantities with a prime are evaludted at x’. The surface integral S ,  is 
vanishingly small except close to a solid boundary, and will be ignored here. The first 
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FIQURE 12. The squares represent the ratio (au,las,)z/(au,/axl)r and the circles the ratio 
( a u s / a x l ) a / m .  Open symbols for contraction (a)  and closed symbols for contraction ( b ) .  

term in (19) arises due to the self-interaction of turbulence while the second arises 
due to the interaction of turbulence with the mean shear. 

Perhaps the most commonly used model for ( p / p )  (aut/ax,) is that due to Rotta 
(1951, 1962) whose model for the first term in (19) (the only non-vanishing term in 
unstrained turbulence) is : 

If c, > 0, the diagonal terms imply a tendency towards energy equipartition. (The 
off-diagonal terms are also explicitly modelled by (20), although the physical mechan- 
ism is not clearly identifiable.) From an examination of Uberoi’s (1957) data on homo- 
geneous turbulence relaxing to isotropy downstream of axisymmetric contractions, 
Rotta (1962) obtained a value of about 2.8 for cl .  There were early speculations (e.g. 
Donaldson 1971) that the first term in (19) is the major contributor to the 
pressure-strain terms (with the constant c1 perhaps taking a value different from 2.8), 
but this notion, however, is no longer seriously considered to be adequate (e.g. 
Reynolds 1976; Lumley k Khajeh-Nouri 1974). Lumley (1978) has argued that c, 
should indeed be a function of certain invariants formed from the strain tensor. At 
least one attempt has been made in the past (Daly & Harlow 1970) to incorporate 
implicitly the influence of mean rates of strain in c1 by letting it be a function of the 
ratio of production rate B to the dissipation rate E of the turbulent kinetic energy. 
This model implies, in its simplest form, that 

c1 = a( 1 + b 8 / s ) ,  (21) 

where a and b are constants. If the production is zero, a = c1 and Rotta’s hypothesis 
is recovered. 

One of the models incorporating the mean strain rates explicitly on a fairly general 
basis is due to Launder et al. (1975). This model appears to be finding its way into 
many computational schemes (see e.g. Proceedings of the Stanford Conference on 
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FIQURE 13. Test for Rotta's linear intercomponent energy-transfer hypothesis. Ordinate represents 
energy gain due to the pressure-strain terms, and the abscissa represents the energy loss according 
to Rotta's model. --- according to Rotta's calculations from Uberoi's data. Open symbols for 
contraction (a) and filled symbols for contraction (b). 

Ordinate Abscissa 

Circles C - l w p )  caur/axl) 1 - 3 q ~  
Triangles e ( p l p )  (au,/axz) 1 - 3 i p  
Rectangles E - w p )  (au3iax3) 1 - 3 % ~  

Lines are drawn through data in (b) only to improve clarity. 

Complex Turbulent Flows, 1981) and deserves careful consideration. According to 
the model, the second term of the volume integral in (19) is written as 

- Y V t ,  - 9 4 , ) 7  t (22) 
where y is a constant, and 

Here, we restrict ourselves to the testing of (20), (21) and (22); other models (e.g. 
Lumley I% Khajeh-Nouri 1974; Gibson & Launder 1978) do exist but are not 
considered here. 

For the diagonal terms, we can write (20) as 

with no summation on a. Figure 13 shows e - l ( p / p )  (Clu,/ax,), a = 1,2,3,  _ _  evaluated 
from energy balance (with E obtained from (13)) plotted against (1 - 3ut/q2). Also 
shown are lines appropriate to Rotta's choice of c. Rotta implied that the constant 
c is the same for all three components in unstrained turbulence. If one insists on 
applying Rotta's hypothesis for the present flows with mean rates of strain, it is clear 
that no single value of c will be adequate for all three components. As has been pointed 
out for example by Leslie (1980), this insistence is an over-rigorous interpretation 

t Near the wall the same model is more involved, but that is outside the scope of the present 
considerations. 
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of Rotta’s model, and is included here only for the purposes of comparison with the 
previous analysis of HGC and Champagne et al. (1970). These authors have also 
determined that the constant c is differentt for different a even in homogeneous shear 
flows without the additional longitudinal strain. Here for the contraction (a), a crude 
attempt to fit (23) to the data gives 

2 for a =  1 ,  

c z  1.2 for a =  2, I 5.7 for a = 3, 

all of which are numerically greater than Rotta’s value ( N l ) ,  indicating correspon- 
dingly increased energy transfer. 

For the contraction (b), the situation is somewhat more complicated. The data 
(joined by lines to improve clarity, with the arrows indicating the direction from 
upstream to the downstream of contraction) show that the component $ initially 
starts out from being the ‘donor’ and 2 the ‘receiver’ of turbulent energy, but 
eventually reverse their respective roles, while 2 remains the ‘receiver’ all the time. 
There is in fact a region over which the tendency towards equipartition does not hold. 
Clearly, Rotta’s model cannot be stretched to strained turbulence except sometimes 
qualitatively as in contraction (a). 

For the Launder et al. model, we can similarly combine (23) with the diagonal 
version of (22) to write 

The quantity within the square brackets can be plotted for various values of c’ and 
the best value chosen for which all the data lie on a straight line; the slope of such 
a line gives c. Doing this, we get (see figure 14) the best combination of constants 
for case (a) as: 

The values of el and y as determined here are not very different from 3.0 and 0.6 
chosen by Launder et al. (see also Gibson & Launder 1978; Gibson & Rodi 1981. 
Gibson & Launder recommend a slightly higher value of 3.6 for c,). For contrac- 
tion (b), however, no combination of c1 and y is satisfactory. This is not surprising 
since, as had been shown by Leslie (1980), the basis of the Launder et al. model is 
not necessarily complete. But, this should not detract from the the fact that it  
appears to work reasonably at least in the case of relatively mild strains. (Similar 
assessments of the Daly-Harlow was also made. Detailed results are not given here 
but i t  is enough to say that its performance for the contraction (a) was marginally 
less satisfactory than the Launder et al. model; the best combination of the constants 
a and b was 2.8 and 1.2 respectively. No combination of these constants was 
satisfactory for contraction (b).) 

It is useful to make one further comment regarding the Launder et al. model. For 
the much used eddy-viscosity model 

C, = 3.3, y = 0.53. (26 1 

t For the pressure-rate-of-strain terms to drop out of the turbulent-energy equation, it is, 
however, necessary that the value of c must be independent of a. Otherwise, it implies an artificial 
relationship among different values of c and the turbulent intensities. Rotta’s model then will not 
retain its physically simple interpretation. 
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FIGURE 14. Test for the Laundel-Reece-Rodi model. Ordinate and symbols as in figure 13. Abscissa 
are the quantities within square brackets in (26), with y = 0.53. The slope of the line gives c1 = 3.3. 

- 
using a typical experimental value of about 2 for the ratio -ulu, (aU,/az , ) /e ,  one 
obtains @ N 0.052. The model of Launder et al., on the other hand, assumes 

_ _  
which, with the present values of c1 = 3.3, y = 0.53 and ui/@ x 0.40 (see figure 8), 
gives @ N 0.057, quite close to 0.052 above. 

6. Conclusions 
A uniformly sheared turbulent flow with approximate transverse homogeneity 

remains so at all stages of its development through a two-dimensional contraction; 
in fact, small deviations from homogeneity observed upstream of contraction become 
much less visible towards the end of contraction. The mean-flow development can 
be predicted adequately by the Bernoulli equation. The turbulence field, however, is 
not in structural equilibrium through the contraction, as indicated by the continued 
variation of the K parameters. 

It is interesting to note that simple irrotational rapid-distortion calculations (or 
their variations) can be used to ‘ predict ’ the evolution of turbulent stresses for some 
distance downstream, although not for larger distances. That shear rapid-distortion 
calculations are not aa successful in predicting the evolution of turbulence stresses, 
even though the shear strain is as rapid as, or marginally more rapid than, the 
longitudinal strain suggests strongly that turbulence structure responds more readily 
to an additional strain, and is consistent with other observations that an extra strain 
(be it curvature, lateral convergence or divergence) has a more dramatic effect on 
turbulence structure than its magnitude suggests. This fact can only emphasize the 
value and usefulness in the context of real flows of theories of rapid-distortion for 
pure strain - be it irrotational (e.g. Hunt 1977), or plane shear (e.g. Townsend 1976). 
This also emphasizes the importance of experiments such as those devised by Gence 
& Mathieu (1979) on successive distortion. 
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Rotta’s hypothesis for the intercomponent energy exchange seems qualitatively 
correct (with the uncomfortable provision that the numerical constant used in (23) 
be different for different energy components) for the contraction (a) with milder 
acceleration, but not for contraction ( b )  with a somewhat stronger acceleration. It 
is uncertain that the more complex models such as those due to Daly-Harlow and 
Launder et al. are general enough (in the sense that they turn out to  be inadequate 
in the case of the stronger contraction), but for situations typified by the contraction 
(a ) ,  these models, in particular that  of Launder et at?., adequately describe the 
behaviour of the pressurerate-of-strain terms. It is especially encouraging to note 
that the constants used in the model of Launder et al. correspond closely to those 
deduced from the present measurements. 

I am indebted to Professor S. Corrsin for an opportunity for making these 
measurements in his laboratory and for several tactful lines of reminder that the 
manuscript is long overdue. My thanks go to Dr M. R. Maxey and a referee for their 
several useful comments. This work was largely supported by Grant NSG 2303 from 
the NASA Ames Research Centre. 

Appendix: Structural equilibrium in homogeneous plane shear flows 
Townsend ( 1976) suggested that the structural equilibrium characteristic of a 

given shear flow is essentially due to  the finite straining effect of the mean shear 
on a (hypothetical) initially isotropic structureless turbulence, and the turbulence 
K parameters in equilibrium shear flows can be uniquely characterized by the 
so-called total strain. Total strain is typically the product of the finite rate of strain 
imposed by the mean velocity gradient and the lifetime of the large eddy. A test of 
the hypothesis is best made in homogeneous shear flows. Townsend (1976) did briefly 
examine this question in one such flow (due to Rose 1966) which had not attained 
energy equilibrium (e.g. the Taylor microscale was continuously increasing with xl) ; 
clearly the question of structural equilibrium in the absence of energy equilibrium 
is questionable. It thus seemed worthwhile examining the ideas in other homogeneous 
plane shear flows that have become available since Rose’s earlier experiment 
(Champagne et al. 1970; Mulhearn & Luxton 1970, 1975; Harris et al. 1977, and parts 
of the present measurements). This appendix is largely devoted to a combined study 
of these flows in the context of total strain as the key correlating parameter for 
determining the structural equilibrium of turbulence. 

Townsend used the same concept also to  include inhomogeneous shear flows, and 
achieved some success in predicting the general characteristics of the various two-point 
double velocity correlation functions over separation distances characteristic of 
eddies which are not too small. We shall also briefly examine the hypothesis as applied 
also to  inhomogeneous shear flows, but some a priori comments must be made. I n  
an inhomogeneous shear flow, eddies will have undergone a whole range of strain 
histories whereas in the rapid-distortion context one is using an effective average 
value of the parameter p. The reason that one considers an exercise such as this a t  
all is the hope that the concept of an ‘average eddy’ undergoing an  ‘average strain 
history ’ may be adequate for discussing certain ‘ average properties ’. 

A 1 .  Total strain 

Although the mean shear acts indefinitely, the total strain that the turbulence 
eddies experience is finite because of their finite lifetime. The obvious definition of 
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FIGURE A 1.  The total strain T aa a function of the parameter (z,/4Yc) (dU,/dz,) in homogeneous 
plane shear flows. 0,  Rose (1966); 0, Champagne et al. (1971); A, Mulhearn & Luxton (1975); 
x , HGC (1977); a, (> are from present experiments just upstream of contraction. 
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FIGURE A 2. The Taylor microscale A ,  aa a function of the 

total strain T. Symbols as in figure A 1.  

total strain is that it is the product of the mean shear rate and the lifetime of the 
large eddy ( -  ?/e). We have here used the quantity 

in the notation of the text to represent the total strain. In  the literature cited above, 
( Z J % ~ )  (dUl/dx2) has been called total strain, but this is clearly not adequate because 
of its continual increase with xl. 

Figure A 1 shows how the total strain B evolves in the homogeneous plane shear 
flows under consideration. All the data collapse on a single curve. In  the flows due 
to Rose, Mulhearn & Luxton, and Champagne et al. the total strain was continually 
increasing with z1 and, not surprisingly, the flows did not attain their asymptotic 
state. On the other hand, in the HGC flow, /3 was a constant ( ~ 4 )  for 
(xl/%!,)(dUl/dx2) 2 5; the total strain being constant in this region, i t  can be 
expected that the structure of turbulence in the flow does not evolve any further. 
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FIGURE A 3. The structural parameters KO, K ,  and K ,  as functions of T. Symbols as in figure A 1.  
Additional symbols are for plane inhomogeneous shear flows: 0,  boundary layer (Klebanoff 1955); ., Wake (Townsend 1956); A, jet (Rradbury 1965); V, mixing layer (Wygnanski & Fiedler 1971). 
For visibility they are enclosed in bigger circles. 

A 2 .  Energy equilibrium 

Figure A 2 shows the variation of the Taylor microscale A, defined by 

for the several flows under consideration here. In  the flows of Rose and Champagne 
et al. the microscale is increasing continuously; in the Mulhearn & Luxton flow in 
which the total strain reaches a somewhat higher value than in the other two, A, shows 
signs of settling down. I n  the HGC flow, the microscale does not grow except perhaps 
initially, indicating that the energy equilibrium has been reached in the flow. These 
observations are of course consistent with the fact that the total strain in all flows 
except the HGC flow are increasing with xl. 
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FIGURE A 4. The total strain T for the inhomogeneous plane shear flows: X, boundary layer 
(Klebanoff 1955), 7 = x2/8 where 8 is the bounda layer thickness at 99.5% of the free-stream 

d is the cylinder diameter; A, jet (Bradbury 1965), 7 = x2/84, where 4 is the half-velocity thickness; 
., mixing layer (Wygnenski & Fiedler 1970), 7 = 5(2,/2, +0.1), where z2 is measured from the lip 
of the nozzle. 

A 3. Structural equilibrium 
In figure A 3 ,  the structural parameters KO, K ,  and K,  (see (2)) are plotted as 
functions of /3. All the data on KO show an increase with /3 for /3 5 2, and seem to settle 
down to a common constant of about 0.16 for larger /3. The general pattern is the 
same also for K,, which seems to settle down, for /3 2 4, to a constant of about 0.45. 
However, for smaller /3, the data from different experiments do not overlap, and show 
a substantial variation from one to another. This non-uniqueness for small /3 is even 
more pronounced for the parameter K ,  for which different experiments approach a 
constant of about 0.27 through essentially different routes. The Mulhearn & Luxton 
data and the Rose data, for example, have opposing trends for /3 5 1.5. A possible 
explanation for this non-uniqueness is that d/3/dt may also be important in 
developing flow. 

The general conclusion appears to be that structural equilibrium may prevail for 
/3 2 4, but not for smaller /3. This is consistent with the earlier findings about energy 
equilibrium (see figure A 2). 

In  order to examine (in the spirit mentioned above) whether the structural 
equilibrium in inhomogeneous shear flows resembles that in homogeneous plane shear 
flows having the same p, we evaluated the total strain /3 for several standard 
inhomogeneous shear flows as well. The total strain /3 is now a function of the 
transverse distance (the direction of inhomogeneity), but characteristic values of total 
strain can nevertheless be defined. Figure A 4 shows the situation for several plane 
flows such as a wake, a jet, a mixing layer and a boundary layer. There is no 
Substantial region over which /3 is a constant but, for wakes, jets and mixing layers, 
the peak is fairly flat so that these peak values can be chosen as the characteristic 
values. For the boundary layer,t /3 does not vary a great deal over some region, and 
the corresponding value (say near 7 N 0.4) can be used as its characteristic value. 

The structural parameters for these flows, evaluated in the regions corresponding 

t Because of the energy equilibrium prevailing quite close to the wall, B must be a constant to 

velocity; 0,  Wake (Townsend 1956), 7 = Zs,/(s,d) 7- , where s1 is measured from virtual origin and 

a much better approximation there. 
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FIGURE A 5. The major angle of the principal stresses as a function 

of T .  All symbols as in figure A 3. 

roughly to the choice of the characteristic B, are also shown in figure A 3. It is clear 
that, except perhaps for the boundary layer, the turbulence structure is substantially 
different from that in the plane shear flows. It thus seems possible that other eddy 
structures not covered by the rapid distortion conditions will play an important role 
in these shear flows. 

Finally, figure A 5 shows the major principal angle a, defined as the larger of the 
two angles, 

-plotted in the case of both homogeneous and inhomogeneous plane shear flows. For 
the homogeneous flows, the angle tends to asymptote to a constant for B k 4 ,  
consistent with earlier findings. For smaller total strains, a, cannot be characterized 
by a single total strain parameter such as B. Again, not all inhomogeneous shear flows 
agree with the general trend. The parallel between the homogeneous and 
inhomogeneous shear flows is at best rather partial. 
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